STAT6 inhibitory peptide given during RSV infection of neonatal mice reduces exacerbated airway responses upon adult reinfection.
نویسندگان
چکیده
Respiratory syncytial virus (RSV)-related hospitalization during infancy is strongly associated with the subsequent development of asthma. Early life RSV infection results in a Th2-biased immune response, which is also typical of asthma. Murine models of neonatal RSV infection have been developed to examine the possible contribution of RSV-driven Th2 responses to the development of airway hyper-responsiveness later in childhood. We have investigated the ability of a cell-penetrating STAT6 inhibitory peptide (STAT6-IP), when delivered selectively during neonatal RSV infection, to modify pathogenesis induced upon secondary RSV reinfection of adults 6 wk later. Neonatal STAT6-IP treatment inhibited the development of airway hyper-responsiveness (AHR) and significantly reduced lung eosinophilia and collagen deposition in adult mice following RSV reinfection. STAT6-IP-treated, RSV-infected neonates had reduced levels of both IL-4 and alternatively activated macrophages (AAMs) in the lungs. Our findings suggest that targeting STAT6 activity at the time of early-life RSV infection may effectively reduce the risk of subsequent asthma development.
منابع مشابه
Delayed Sequelae of Neonatal Respiratory Syncytial Virus Infection Are Dependent on Cells of the Innate Immune System
Infection with respiratory syncytial virus (RSV) in neonatal mice leads to exacerbated disease if mice are reinfected with the same virus as adults. Both T cells and the host major histocompatibility complex genotype contribute to this phenomenon, but the part played by innate immunity has not been defined. Since macrophages and natural killer (NK) cells play key roles in regulating inflammatio...
متن کاملBuilding a better neonatal mouse model to understand infant respiratory syncytial virus disease
BACKGROUND Respiratory syncytial virus (RSV) is the number one cause of lower respiratory tract infection in infants; and severe RSV infection in infants is associated with asthma development. Today, there are still no vaccines or specific antiviral therapies against RSV. The mechanisms of RSV pathogenesis in infants remain elusive. This is partly due to the fact that the largely-used mouse mod...
متن کاملLimited type I interferons and plasmacytoid dendritic cells during neonatal respiratory syncytial virus infection permit immunopathogenesis upon reinfection.
UNLABELLED Respiratory syncytial virus (RSV) infection is the number one cause of bronchiolitis in infants, yet no vaccines are available because of a lack of knowledge of the infant immune system. Using a neonatal mouse model, we previously revealed that mice initially infected with RSV as neonates develop Th2-biased immunopathophysiologies during reinfection, and we demonstrated a role for en...
متن کاملThe role of T cells in the enhancement of respiratory syncytial virus infection severity during adult reinfection of neonatally sensitized mice.
Respiratory syncytial virus (RSV) is the major cause of infantile bronchiolitis and hospitalization. Severe RSV disease is associated with the development of wheezing in later life. In a mouse model of the delayed effects of RSV, the age at primary infection determines responses to reinfection in adulthood. During primary RSV infection, neonatal BALB/c mice developed only mild disease and recru...
متن کاملExposure of neonates to Respiratory Syncytial Virus is critical in determining subsequent airway response in adults
BACKGROUND Respiratory syncytial virus (RSV) is the most common cause of acute bronchiolitis in infants and the elderly. Furthermore, epidemiological data suggest that RSV infection during infancy is a potent trigger of subsequent wheeze and asthma development. However, the mechanism by which RSV contributes to asthma is complex and remains largely unknown. A recent study indicates that the age...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of leukocyte biology
دوره 101 2 شماره
صفحات -
تاریخ انتشار 2017